Proposta de aula interativa da professora de Matemática Rosane Sidaco envolvendo a informática educativa.
O que são números inteiros?
Introdução aos números inteiros
Na época do Renascimento, os matemáticos sentiram cada vez mais a necessidade de um novo tipo de número, que pudesse ser a solução de equações tão simples como:
x + 2 = 0, 2x + 10 = 0, 4y + 4 = 0
As Ciências precisavam de símbolos para representar temperaturas acima e abaixo de 0º C, por exemplo. Os astrônomos e físicos estavam procurando uma linguagem matemática capaz de expressar o movimento de atração entre dois corpos. Quando um corpo age com uma força sobre outro corpo, este reage com uma força de mesma intensidade e sentido contrário.
Mas a tarefa não ficava somente em criar um novo número, era preciso encontrar um símbolo que permitisse operar com esse número criado, de modo prático e eficiente.
Sobre a origem dos sinais
A idéia sobre os sinais vem dos comerciantes da época. Os matemáticos encontraram a melhor notação para expressar esse novo tipo de número. Veja como faziam tais comerciantes:
Suponha que um deles tivesse em seu armazém duas sacas de feijão com 10 kg cada. Se esse comerciante vendesse num dia 8 Kg de feijão, ele escrevia o número 8 com um traço (semelhante ao atual sinal de menos) na frente para não se esquecer de que no saco faltava 8 Kg de feijão.
Mas se ele resolvesse despejar no outro saco os 2 Kg que restaram, escrevia o número 2 com dois traços cruzados (semelhante ao atual sinal de mais) na frente, para se lembrar de que no saco havia 2 Kg de feijão a mais que a quantidade inicial.
Com essa nova notação,os matemáticos poderiam, não somente indicar as quantidades, mas também representar o ganho ou a perda dessas quantidades, através de números, com sinal positivo ou negativo.
O conjunto Z dos Números Inteiros
Definimos o conjunto dos números inteiros como a reunião do conjunto dos números naturais, o conjunto dos opostos dos números naturais e o zero. Este conjunto é denotado pela letra Z (Zahlen=número em alemão). Este conjunto pode ser escrito por:
Z = {..., -4, -3, -2, -1, 0, 1, 2, 3, 4,...}
Exemplos de subconjuntos do conjunto Z:
Conjunto dos números inteiros exceto o número zero:
Z* = {..., -4, -3, -2, -1, 1, 2, 3, 4,...}
Conjunto dos números inteiros não negativos:
Z+ = {0, 1, 2, 3, 4,...}
Conjunto dos números inteiros não positivos:
Z- = {..., -4, -3, -2, -1, 0}
Observação: Não existe padronização para estas notações.
Reta Numerada
Uma forma de representar geometricamente o conjunto Z é construir uma reta numerada, considerar o número 0 como a origem e o número 1 em algum lugar, tomar a unidade de medida como a distância entre 0 e 1 e por os números inteiros da seguinte maneira:
Ao observar a reta numerada notamos que a ordem que os números inteiros obedecem é crescente da esquerda para a direita, razão pela qual indicamos com uma seta para a direita. Esta consideração é adotada por convenção, o que nos permite pensar que se fosse adotada outra forma, não haveria qualquer problema.
Baseando-se ainda na reta numerada podemos afirmar que todos os números inteiros possuem um e somente um antecessor e também um e somente um sucessor.
Ordem no conjunto Z
O sucessor de um número inteiro é o número que está imediatamente à sua direita na reta (em Z) e o antecessor de um número inteiro é o número que está imediatamente à sua esquerda na reta (em Z).
Exemplos:
3 é sucessor de 2;
-5 é antecessor de -4
0 é antecessor de 1
-1 é sucessor de -2
Simetria no conjunto Z
Todo número inteiro z exceto o zero, possui um elemento denominado simétrico ou oposto -z e ele é caracterizado pelo fato geométrico que tanto z como -z estão à mesma distância da origem do conjunto Z que é 0.
Exemplos:
O oposto de ganhar é perder;
O oposto de perder é ganhar;
O oposto de 3 é -3
O oposto de 5 é -5
Texto extraído do blog: http://reaprendendomatematica.blogspot.com
http://reaprendendomatematica.blogspot.com/2011/02/o-que-sao-numeros-inteiros.html
JOGOS COM SOMA E ADIÇÃO DE NÚMEROS INTEIROS
Apoio: Professora Orientadora Tecnológica Patrícia Rebello
Um comentário:
Valeu!
Postar um comentário